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I. INTRODUCTION

In an effort to develop & method to be used in de~
eigning transition sections for rectangular open channels in
which the flow would be at supercritical velocities the study
described herein was made. It was realized that this problem
is closely allied to that of supereritical flow in curved
open ochannels, hence due consideration wes given to the re-
sults obtained by Ippen and Knapp at the California Institute
of Technology in the investigation of such flows.

References in current periodical literature to some
unusual and obvicusly incompletely understood phenomena as~
sociated with flow in transitions in open channels served as
an incentive to carry on the work, It was at first believed
that in addition to an experimental investigation a complete
theoretical analysis might well be poasible. However, as the
work progressed a number of revisions, including a consider-
able narrowing of the scope of the investigation, were found
imperative.

The original plan envisaged the development of de-
sign procedures for various types of transitions, A tran-
sition from a rectangular chennel of a given width to one of
greater width, effected by means of walls forming reversed
curves tangent at either end to straight parallel channel
walls, was the first to be studied. It was soon apparent

that this type of transition involved a flow pattern far
too complicated to permit complete analysis at the present



time. A transition involving simple curved walls tangent
at either end to straight walls which are initially paral-
lel and whioch diverge downstreem from the curved section
was found to be the most complex structure the design of
which could be underteken with some degree of confidence.

The experimental work involved & large number of
experiments on transitions with reversal of wall curvature
a8 well as with the simpler diverging walls. A wide range
of pertinent ratios of lengths involved in the geometry of
the transitions as well eas a wide range of Froude numbers,
the latter being limited by the velocities obtainable in
the models, were used to facilitate the formmlation of an
empirical solution in the event that no analytical one was
found,

A theoretical enalysis of the flow bounded by a
diverging curved wall with non-hydrostatic pressure distri-
bution with particular reference to pressures less than
hydrostatic was made and an interpretetion of the expsri-
mental data in the light of this analysis 18 given. Equa-
tions were derived which ald in making a qualitative study
of the experimentel data, but which are not as yet suffi~
ciently complete to predict quantitatively the elements of
the flow at a diverging ocurved wall or in the main body of
the liquid in the chennel. The limitations upon the use
of the data, which were obtained with relatively small

structures, and asimilar data on small models for predicting



the elements of the flow in a full scale channel are set
forth.



II. PROPAGATION OF DISTURBANCES IN
SUPERCRITICAL FLOW

(a) Wave veloeity with hydrostatic
pressure distribution

When water flows in an open channel at a velocity
in excess of the velocity of propagation of a small wave in
water of the given depth, the flow is said to be at super-
critical velooity, the eritical veloocity being equal to the
elementary wave veloecity. ©Small disturbances such as in-
orementa or decrements of the water depth are propsgated at
wave velooity and cannot proceed upstreem in supercritical
flow. The wvalue of the elementary wave celerity ¢ rela-
tive to the fluid is given by the expression,

¢ = fad (1)

in which g is the acceleration due to gravity and 4 is
the depth of the water. The derivation of this equation
and all those desoribed herein may be found in the appen~
dix. It is assumed that the wave height is small and the
wave length great relative to depth and that the pressure
distribution is hydrostatio.

(b}'waxm angle
If a samall disturbance is continuous in nature,
such as would be the result of continuous flow past a
change in the Aireotion of a channel wall, a wave front is
formed, starting at the disturbance point and extending



into the flowing water at an angle with the original direc~
tion of flow usually termed Z , the wave angle. This
angle is defined by the expreesion

gin & = 1'?1" (8)

in which ¢ is the wave velocity defined by Equation (1)
and u 1s the mean veloocity in the original direction of

flow. Upon substitution of the expression for c¢ we have,

stn o = (E4 (3)
or sin 3 = }3;5 (3a)

where F 1is the Froude number defined by the expresasion

Fﬁggo

{c) Depth change on passing under a wave front

As the water passes under a wave front, the com=-
ponent of momentum perpendicular to the wave front under-
goes & change in magnitude proportional to the negative
change in depth of the weter, whereas the ocomponent paral-
lel to the wave front remains unchanged, since the eleva-
tion of the surface along the wave front is constant. The
changes in depth and components of veloclty are represented
in Fig. 1.
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A simple derivation on the basis of coatinuity,
geometry of the vector diagram, and the momentum principle
leads to the following equation for the increment of depth
in tems of angular change in the direction of the bound-

ary, wave angle and veloolty of the water,

2
AG = g-tan/@»Ae (4)

If the pressure distribution in the body of the
liquid may be considered esaentially hydrostatic and if
frietion losses may be ignored, the flow along a curved
boundary may be successfully analyzed on the basis of the
elementary prineiplesa set forth ebove. A most sugcessaful
analysis of this type was maede by Ippen and Knapp in "4
Study of High Velooity Flow in Curved Sections of Open
Channels”, Pasadena, California, March 29, 1938.

In that study an equation derived on the assump-



tion of constent velocity along the wall proved best in
describing the wall profile of the water surface along the
curved wall., This equation will be used herein for pur-

poses of comparison and is given here,

%o = F, sin® ([6; 3 S’) (5)

in which the subscript zero refers, as it will throughout
this discussion, to conditions at the beginning of the
ocurved wall, The significance of the terms in Equation
(5) 1s as followa:
d = depth of the water
/2 = the wave angle
© = the total angle between the tangent
at the beginning of curve and the
tangent at the point at which the
depth is 4 .,

F = the Froude number defined by the ex-
pression e

F.EE

(d) Wave velooity with non~hydrostatic
pressure distridbution

Let it be assumed that the pressure distribution
at the wall and within the body of the liquid is not hy-
drostatioc. In Fig. & 18 shown a section similar to sec-
tion A-A of Fig. 1 taken perpendicular to a wave front,
which will now be defined as a line slong which there is
no change of momentum of the liquid.
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The foroces Py and P, per unlt width acting
on the ends of the free body are the non-hydrostatic pres-

sure forces which will be represented thus,
dg P o ng ()
Pl = klxoﬁz and 2 = K3 A T

in which P is the unit density of the liquid and the
coefficients kl and kp vrepresent the factors by which

the total hydrostatic preassure corresponding to the depths
dl and dg must be multiplied to obtain the actual total

pressures It will be assumed that the friction forces act-
ing on the element of liquid are negligible in comparison
with the pressure forces.

We may now proceed to a derivation of the veloc~
ity of propagation of a small wave with conditions as
described above. The veloocity is assumed to be uniformly
distributed throughout a vertical section. The momentum
equation is written in the following form,



2 - of
Py =Py =p (05 dg -0 & ) (7)
From the continuity relationship we have,

Assume now that the wave helght is small, that is 4, - 4,
is a very small quantity oompared to dl « The simltan-
~eous solution of Equations (6), (?), and (8) leads to the
following equation for the wave velocity e,

o = )/gd[icl . a(;:%f o - E‘f’ﬂ (9)

For the case of hydrostatic pressure distribution

kl " kz = l., In this case Equation (8) reduces to
Equation (1) which gives the velooity of propagation of the

elementary wave with hydrostatic pressure distribution.

(e} Wave angle
By definition the wave angle is given &s the
ratio of the wave velooity to the mean velocity of the lig-
uid. Equation (2) thus gives the sine of the wave angle
in the general form., Equation (3) gives the wvalue for the
particular cese of hydrostatic pressure distribution, The
following equation gives the sine of the wave angle for

the case of non-hydrostatic pressure distribution,
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kid k
1 .Vﬂ k., * 1 1 - 8 (10)

which in turn reduces to the equation for the wave angle
with hydrostatic pressure distribution when k =» 1,

(£) Depth change on passing under a wave front
Euploying the momentum equation and with regard
for the geometry of the vector diegram of Fig. 2, the fol-
lowing equation for the depth change experienced by the
liquid passing under a wave front may be derived,

2
- U , dn . k
Ad 2 tan/3 46+ .g(l E_J;) (11)

which may be reduced to the meore significant form

?’%[’%'(ﬁg}a*lﬁkﬂ (12)

through the assumption, which is valid for lerge Froude
numbers, that sin G = tan/e. For the case of hydro-
static pressure distridbution k = 1 and ak/ie = 0 and
Equation (11) will reduce to Equation (4) which was de-
rived specifically for the case of hydrostatic pressure
distribution. 1n using sk to represent k; = kp it is
apparent that the sign of 4k/,o 1s positive as is the
sign of Ad/io when k and & respectively increase in
the direction of propagation of the wave indicated in



1l

Flg. 2.

(g) Interpretation of equations

Equation (12) may be employed to make & very sig-
nificant comparison between the rate of change in the depth
Ad/re which may be expected with non-hydrostatic pressure
and the corresponding rate of change of depth if the pres-
sure distribution were hydrostatio. Throughout the follow-
ing discussion, for the sake of brevity the term "normal"”
will be used to refer to elements of flow wilth hydrostatio
preassure distribution, and the subscript n will denote
the quantities which are elements of the normal flow.

If Equation (4) is solved for ~d/ae and if
tans and u and g are evaluated in terms of the Froude

number there results:

ole.

TR (18)
It large values of F are to be considered the simplifioca-
tion of 4ropping the factor unity in the denominator may be
made and the following simple expression results:

a8 . g (14)
A

The ratio of the expected angular depth gradient
Ad/se to the nmormal gradient may now be expressed in the
forn,

_..f_c%i_ - # [“49 !/( sk ] (15)
(A%o), B JVE




1z

A oriterion may now be esteblished which will indicate for
any glven set of conditions whethor the angular depth gra-
dient 24d/,c mnay be expected to be greater or less than
the normal value, If the ratio expressed in Bguation (15)
has the value unity the angular depth gradient with non-
hydrostatic pressure distribution will be equal to the
normal value. Setting the ratio equal to unity and reduc-~
ing 1t to simplest form one obdbteins for the criterion the
expression,

g -er (6)

It 12 now apparent thaet for any given local value
of the Froude number there is a certain combination of the
faotors describing the characteristics of the flow which
will result in an angular depth gradient equal to that for
normal flow., However, if the characteristics of the flow
are such that the combination of terms on the left hand
side of Equation (16) 48 greater or less than the quantity
2 Fﬁ the surface slope will be less or greater than normsl
respectively. That such is the case is apparent from Fig.
3 wherein are plotted values of the angular depth gradient
ratio for various assumed combinations of the variables
F, k and ak/fio « For any given values of F and k
an increase or decrease in Ak/ie .will result in a de-
crease or increase in the angular depth gradient ratio
respectively, which demonstrates the above statement.



www.manharaa.com

o AJLb



14

The same criterion will indicate the relative
value of the wave angle. However in this case values of
the gquantity on the left of Equation (168) greater or less
than 27 F indicate values of & greater or less than
normal respectively. Obviously the same criterion applies
to the wave velocity since the wave velocity divided by
the average velocity of the flow is equel to sing . In
this connection an interesting form of the equation for the
angle 4 18 obtained by a transformation similer to that
used in obtaining Bquation (12). This equation is,

. (KVE 1 & 2 3
sln & (f) [1 “1 + (14 lﬁi‘k(%% ) ] )

These equations may be used to adventage in dia-
cusaing the flow at a ourved boundary since it has bdbeen
established experimentally that the pressure at the wall
i3 in certain cases non~-hydrostatic. It is at present im-
possible to integrate the equation for s2d/se to obtain
the depth directly as & function of the variables F and
k since these mmst first be determined experimentally or
a method must be devised to relate the factor k directly
to the curvature of the surface, the Froude number and the
depth. The interdependence of these quantities 1s apparent
from the fact that the subnormal pressure results from
vertical acoeleration, which is a function of the surface

curvature, which in turn depends upon the Froude number



15

end relative curvature of the wall. A method for the de-
termination of the surface contours in supercritical flow
based on the anslogy with supersonic gas flows has been
devised and is admirably set forth by Ernst Prelswerk in

& work which has been transleted and published by the
National Advisory Committee for seronsutics in Techniocal
Hemorandums #9054 and 935. In a series of experiments
carried on at the Institute for Aerodynamiocs of the
Eidgenoessische Teohnische Hochsehule, Zurich, the vaelidity
of this method was demonstrated. However, it is applicable
only when the vertical components of the aocceleration of
the fluid are negligible. Obviously such a method cannot
be used satisfactorily for the anaslysis of flows discussed
herein, A similar method of attack would be desirable for
that type of flow, but the formulation of such an analysis
is beyond the scope of the present work which seeks only

to point out the exiatence of the problem and the general
characteristios of the flow,

(h) Limitations
In order to interpret the flow properly in terms
of the equations set forth ebove, the following factors
mast be kept in mind. In deriving the equations a wave
front was defined as a line along which there is no change
in momentum of the liquid. A wave front is therefore no
longer fully oharaoterized by the feature that all points

on it have the same surface elevation, as was the case
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for the elementary wave theory. Rather the wave fronts
are lines in the direction of which there is no net accel-
erating force acting on the liquid. Surface elevation
contours will not serve now as wave fronts since the true
wave front is also determined in part by contours of con-
stant mean pressure., However, the characteristics of the
surface contours 4o to some extent indlcate the shape of
the wave fronts, and are useful in studying certain fea-
tures of the flow. The wave fronts are determined dy the

fact that the quantity k42 mst be a constant along these
lines, This follows from the fact that there is no net
force in a given direotion when Pl - by is zero. From
the definition of k the necessity for the constant value
of ka2 follows immediately.

It i3 to be noted that the increments 44 and
sk are defined as the inerements in 4 and k respec-
tively perpendicular to the wave front. The inorement
Aé in the ratios sdfse and ak/re indicates the change
in direction of the wvelocity vector upon passing under the
wave front. The direc¢tional character of these ratios is
important since the preasure gradient varies with the
direction in whioch 1t is measured.

In order to evaluate the factor k from the ex-
perimental data 1t is necessary to determine the unit
pressure at various points on a vertical line extending

from surface to bottom of liquid. This would make poss=-
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ible a computation of the total pressurs on a vertical area,
By definition k 1is the ratioc of this total pressure to

the hydrostatic pressure on an equal area similarly located.

(1) summary

To summerize the principle features of the ex~
tended theory of the propagation of small disturbances in
supercritical flow the following statements may be made.

1. The wave velocity and wave angle as well as
the angular depth gradient may be greater or less than the
normal values depending upon the relative local values of
the quantities k and ak/io for a given Froude number.

2, 1If the angle ~ 1is greater then normal the
angular depth gradient will be less and if the angle
is less than normal the angular depth gradient will be
greater than normal.

3¢ In order that no disturbance may be propa-
gated 1t is not only necessary that the local value of k
be zeroc but also that sk/2e be zero. This is apperent
from a study of Equation {9) for the wave velocity.

4., Wave fronts do not coincide with the surface
elevation contours of the body of the liquid in the channel,
The determination of the location end form of the wave
fronts requires a knowledge of the pressure distribution
within the fluid.

5. Prediction of the elements of the flow in-
cluding the surface profile at the curved wall in eny but



i8

an empirical manner mst await further analysie of the me-
ochanics of the flow with specisl reference to the evaluation
of the pressure in terms of the surface slope, the relation~
ship being dependent upon the components of the sccelera-
tion within the body of the liquid,

(3) Effect of friction

If a viscous liquid flows at supercritical ve-
loocity on a horizontal surface in a chammel of uniform
width the loses in mechaniocal energy due to conversion into
heat by the viscous forces will result in an inecrease in
depth of the liquid. This may be verified either by a di-
rect consideration of the specific ensrgy diagram or by an
inspection of the differential equation of varied flow.
This equation in general form is,

~

od - So — Cé‘c/'?
dx / - 9(:;’

where R 1is the hydraulic radius, s, 1s the bottom
slope, ¢ 1is the Chezy coefficient, x is the coordinate
in the direction of which the wvelocity u is taken. When
the velocity is supercritical the tem u?/gd which is the
Froude number is large compared to unity, Also for the

case of flow on & horizontal surface s. 1is zero. The

(o)
equation then reduces to,

ul.
oo _ — R
o' x /-jﬁg

This quantity is obviously positive indicating an increase
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in depth. This contrasts with the decreesing depth of sub-
oritical flow. It may be concluded thersfore that the
effect of friction on the depth would be to increase it
above the value which would be expected for a perfect fluid.

(k) Desoription of flow in transitions

Since transitions are combinations of curved and
straight channel walls, & good idea may be formed of the
nature of the flow which may be expected on the basis of
the principles set forth ebove. In Figure 4 are shown two
simple types of transitions, Consider firet, to eliminate
complicating factors, & transition of the type shown in
Fig. 4a, of very great width. As the water enters the
diverging seotion, the surfece at the wall will fall in
accordance with the elementary theory and Equation (5)
will adequately describe the surface profile at the wall
providing the assumptions made in the derivation are sub-
stantially fulfilled, 1.e., vertical acceleration is neg-
ligible and friotion losses may be ignored. In order that
such be the case, the curvature must be slow enough to in-
sure hydrostatic pressure distribution and yet not ao slow
that the friction effects are apprecieble. The surface
contours will then be straight lines making the angle /#
with the well at all points., This angle 5 will deorease
in magnitude along the wall as the depth deoreases since
observations indicate that the velocity remains essentially

constant.
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In Fig. B is shown a sketch of the fiow along a
diverging boundary which for the sake of clarity in de~
scription is shown a8 &8 series of chori straight segments
each making the angle Ao with the preceding segment.

The wave fronts then appear as lines with finite spacing.
The atreemlines will be as indicated in the sketoh. The
spacing of the streamlines graduelly becomes greater as
the flow proceeds along the boundary. 4As the water passes
under each succesgive wave front it changes in direotion
so that the flow is always parallel to the corresponding
segment of the wall, In the case of a smooth curve the
flow would be modified to the extent that the wave fronts
would be spaced at infinitesimel distances, and the stream-
lines would be smooth ourves.

In Fig. 6 is shown a transition of a slightly
more complicated type. The flow up to the point of in-
flaotion of the curve will be as previously described.
After pessing the point of inflection of the ocurve the
effect will be similar to that in the initial part of the
channel but with inereasing rether than decreasing depth
end with the streamlines becoming closer spaced rather than
wider spaced as before. The ultimate depth attained at
the straight wall will be identiocsl with the initial depth
and the spacing of the stresmlines will assume the original
value, This restoration of initial conditions will ocour

providing there is ﬁ§§@ﬁ@@ﬁ?ﬂﬁéﬂﬁﬁf&ﬁ&@ﬁ%&;ﬁéundary in this
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region, the boundary drag is negligible and the waves are
of the same type for both convex and concave curvature of
the wall, If these oconditions are fulfilled the liquid
will be moving in the same direction with undiminished
velocity after passing the curved wall., There is there-
fore no net change in momentum, end consequently no change
in depth.

If a channel of the first type is of finite width,
waves crossing from the opposite sides of the chamnel will
sugment the depth ohange at all points of intersection, in
accord with the principles of wave interference, The sur-
face contours, moreover, will then be curved lines since
interference of waves sugmenting the depth change will pro-
duce lesser depths in the central region of the flow in
the channel along a gilven wave front than exist at the wall,
It is therefore necessary to go upstream to find a point
with & depth equal to that at the wall on a given wave
front. The angle between contours and wall will then equal
the wave angle only at points unaffected by waves crossing
the channel., Similarly in e transition of the second type
the negative waves orossing the channel will reduce the
offect of the positive wave. The surface contours will
again be curved lines.

If the friction losses may not be neglected,
their effect will be evidenced at the wall by an increase

in the elevation of the water surface and a corresponding



distortion of the wave fronts.

If the pressure distribution is not hydrostatic,
the effects indicated in the development of the equations
of wave velocity, wave angle, and change in depth for non-
hydrostatic pressure distribution may be expected. Pro~
cesding again from the simple to the complex, the flow at
the diverging ourved wall may first be discussed. As the
liguid enters the diverging seetion the deviation of the
wall from a straight line produces a reduction in the wall
pressure, which in turn produces a vertical acceleration of
the liquid. This pressure reduction has an immediate effect
upon the wave velocity, wave angle, and slope of the liquid
surface, in that these quantities will be either larger or
smaller than the normal values depending upon the relative
values of the factor k and the ratio ak/ae in relation
to the local Froude number., A quantitative evaluation of
k in tems of the surface slope end Froude number has not
yet been made, hence only trends may be indicated.

The relative radius and Froude number together
determine the magnitude of the pressure reduction. For
short relative radii, or large Froude number, the vertical
accelerations of the particles are large; consequently a
considereble reduction in pressure is to be expected. Fig.
3 is s graphical representation of the equation for the
angular depth gradient from whioh may be obtained definite

information on the general form of the surface curve., If



the liquid is assumed to enter the channel with uniform
velocity throughout the cross section, hydrostatic pressure
distribution, and with negligible boundary drag the values
of k and the ratio ak/ao would be unity and zero re-
spectively. The point in Fig. 3 indiocative of this initiel
condition would lie on the horizontal line indicating the
value of ratio ,%gldgg% equal to unity, Its position
on this line would be determined by the initial Froude
number.

The use of the diagram to prediet surface pro-
files 1s not feasible since there is one degree of in-
determinancy involved due to the fact that k has not
yet been expressed as & function of F and the relative
radius. The dlagram will be used in the analysis of flows
of this type for which data are available., The streamline
diagram and surface contour diegram for a flow of the type
under discussion would constitute a modification of those
shown in Fig. 5 for the case of hydrostatic pressure dis-
tribution. The chief differences would be curved rather
than straight wave fronts, and different anglea between
contours and wall and wave fronts and wall.

The effects of the non~hydrostatic pressure
distribution on the flow ip a transition of the second
type would center primerily in the upstreeam portion of the
transition. However, secondary effects would be evident

in such & transition of finite width since the waves crose-
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ing the channel would have different angles than those of
the normel flow., The resulting reduction in supereleva-

tion would differ then in magnitude from that of the nor-
mal case,
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III. LABORATORY INVESTIGATION

The nature of the spparatus used in the experi-
mental work may best be understood by reference to the
photographs in Figs. 7 end 8 and the sketch in Fg. 9.
These show the general arrangement of the apparatus at both
the University of Iowa and Wayne University. The two sets
of equipment were essentially the same in principle, pro-
viding for the introduction of a jet of water rectangular
in cross-section to a channel with walls which formed a
transition of the desired type. It was assumed that only
one~-half of the channel need be used, the center-line be-
ing simlated by a plate of glass forming a straight
vertical wall, and the ocurved wall being simply a piece of
pyralin so constructed that it ocould be formed to the de-~
sired plan and held in place.

As may be seen in Figs. 7 and €, the source of
water at the University of Iowa was a ten inch distribu-
tion pipe coming from the constant head tenks. The flow
from this pipe was controlled by a six ineh valve located
in a pipe leading from a tee in the main line. The water
passed through a weir box equipped with a 90° v-notch
weir and hook gage to a channsl in which the flow was
quieted by means of baffles, thence through a device which
provided & means for varying the size of the Jjet of water
introduced to the channel. The jet issued from a tube,

rectangular in cross-section with contractions suppressed
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on two sidea by means of cylindrical surfaces of one foot
radius, the other two sides being the bottom and one side
of the approach channel, This equipment made possible the
production of a jet with minimum dimensions of 1" x 1" and
maximom dimensions of 6" x 6". All combinations of the
intermediate depths and widths were possible but limita-
tions on the quantity of water and velocity available fixed
the maximum size at about twenty-four asquare inches in
oross-sectional area. The trensition section was con-
structed on a horizontal plane surface which consisted of
composition board mounted on a sultable structural freme,
painted and marked off in a rectangular ccordinate system.
Details of a transition section may be seen in ¥Fig. 10.
The epparatus used at Wayne University differed
in one essential reepect from that described above -- no
adjustment of the size of jet was possible. The Jet was
formed by mesans of a galvanized iron transition piece from
a three inch ecircular pipe to a one and one~half inch
square tube. The Jet issued directly upon a horizontel
surface formed by & two-inch plank mounted on a structural
frame. The surface was painted and marked in & rectangular
coordinate system as was the ome at the University of Iowa.
The discharge was determined by means plezometers in the
transition section of the tube which was calibrated in
plece. This tube is shown in greater detail in Fig. li.
The water was pumped directly to this tube by a centrifugal
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pump from & sump with no provision for constant head main-

tenance. No appreciable head variation wes noted.

At both the University of Iowa and Wayne Uni-
versity the depth of the water was determined by means of
a point gage mounted on a traveling bar which gave full
freedom of motion in a horizontal plane. The location of
the gage was determined in terms of two coordinates from
the origin of the coordinate system marked on the channel
‘bnwm by means of graduated tapes end indicators attached
to tha.'traveling bar and gage i1tself, The elevation of
the water surface was determined by point gage readings
on the surfece and channel bottom.

With the apparatus desoribed above it was poss-
ible to determine the gquantity of water flowing in the
chamnel and the depth at any point within the boundaries
of the transition. By direct computation the location of
surface contours and the shape of surface profiles could
then be determined.

Additional equipment was used In several studies
to secure certain information in addition to that which
could be odbtained with the apparatus described above,
This equipment coneisted of a channel with sloping bottom
illustrated in Fig. 12, piezometers in chamnel bottom and
walls and threade attached to the channel bottom, the
latter providing both visual and photographic indications
of the direection of the veloocity vectors at specified
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points in the channel,

In a majority of the runs, notably those made at
the University of lowa during the summer of 1939, the ob-
Ject was simply to determine the elevation of the liquid
surface within and beyond the transition section. The pro-
gedure under these circumstances was simply to establish
the conditions desired by forming the wall to the requisite
form, providing & Jet with the necessary cross section and
establishing & flow with the specified Froude number, and
then to meke as many observations with the point gage on
the water surface as was deemed advisabls,

In leter runs, when the importance of the pres-
sure distribution had been realized, morse mumerous observa-
tions on the elevation of the surface of the liquid were
made and the pressures at certain specified points were

determined by means of piezometers.
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IV, ANALYSIS OF EXPERIMENTAL DATA
(a) Transitions with reversal of wall curvature

The essential findings of this study ere summa-
rized briefly in Fig. 13 wherein is shown the ratio of the
maximum depth along the curved waell 4, to the initial
depth expressed by the ratio dm/do as & function of the
initial Froude number, with the pertinent geometrical ratios
indicated in the legend. In Fig. 4 is shown the nomen-
oclature used herein on a sketch of typical transitions. The
use of the ratios m/b, and by/b, was based on a study of
the influence of the fundamental ratios m/d,, b,/4, and

be/dp which indicated that the use of the product m/d, X
45/ = m/by was justified since all points representing

data based on transitions with equal values of this product
of length ratios lay on the same straight line. A similar
situation existed with respect to the ratio by/D, .

The principle feature of this diagram 1s the fact

that it conforms to expectations on the basis of the ele-

mentary wave theory in a general mammer. The ratio dp/do
exceeds the value unity for only & few cases which may be

explained on the basis of high loocal vertical accelerations
at the downstreem point of tangency between ocurve and
straight well, At low Froude numbers the value of 4&./dy
is low, since the negative waves, meking large engles with
the originel airection of flow, cross the channel and re-
duce the superelevation of the water surface, In long

curves, which are indicated by large values of m/b,, @&
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similar effeet is noticed, since the wave fronts, even
though making small angles with the wall, cross the channel
within the limits of the transition and reduce the super-
elevation,

The flow in the upstream portion of this type of
transition is identical with that in & transition without
reversal of wall ocurvature., The analysis of the data for
this part of the channel will be carried out in the next
section which relates only to flow in a channel bounded by
diverging ourved walls and straight tangents.

A quentitative anelysis of the reduction in super-
elevation by the weves crossing the channel is not feasible,
since the flow with subnormal pressure is not yet subject
to complete enalysis even when the waves do not cross with-
in the limits of the transition.

{b} Flow at diverging ocurved wall

The theory of the propagation of small disturb-
ances in a liquid flowing at supercritical veloclity was
extended to include the situation wherein subnormal pres-
sures exist within the body of the liquid in an effort to
explain differences which became evident during the invest-
igation between ectual surface profiles and those predicted
by the theory based on normal pressure distribution. In
order to determine the explanation for these differences
between the predictions of the elementary theory and actual

observation 1t is necessary to establish certain factis.



Since the elementary theory assumed that the
friction effects were negligible and the pressure distribu-
tion was hydrostatic, lack of conformity with either of
vhese assumed conditions would merit consideration. It has
been shown previously that the friction at the boundaries
would tend to increase the surfeace elevation. The exist-
ence of a non-hydrostatic pressure distribution could have
the effect of either raising or lowering the elevation
sbove the normal, depending upon the relative radius end
the Froude number,

It remains therefore to either establish the
frictional dreg as the explanation for the difference be-
twesn normel and actual profiles or to eliminate it fronm
consideration and to esteblish or disprove the existence
of subnormal pressures and discuss the possible effects if
the existence of such pressures 1s demonstrated. . In order
to carry out the necessery analysis of the experimental
date the plottings shown in Figs. 14, 15, 16, and 17 were
prepared.

In studying the effect of friotional drag 1t is
first necessary to estasblish, if possible, the probable
magnitude of the surface slopes due to this factor alone.
Secondly, the relative magnitude of the effect of frioction
in varioﬁs cases should be evaluated. The first of these
points 1s simply handled by computing the megnitude of the

surface slope for a general case by means of the varied
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flow equation. As has been shown previously, this equation
reduces to the following form for large Froude numbers with
flow taking place on & horizontal surface,

aa , -u¥ or

& l- ua/ gd
This equation may also be written more simply in the fol=
lowing form,

%% - -ug' ¢ R
This equation may be used to determine approximately the
surface slope due to frietional drag alone., The approxima-
tion lies chiefly in the value of Chezy's coefficient, tab~
ulated values of which have been evaluated for uniform flow,
The second point is concerned chiefly with the fact that
the longer the curved surface along which the liquid is in
contact the greater should be the total effect of the
frictional arag.

To study these two points Figs. 14, 15, and 16
will be useful. In Runs 175-178 the initial Froude number
was 10, the initial depth was approximately 0.33 ft., and
the initial veloecity 10 ft. per sec. The value of Chezy's
¢ was not determined but for rough celeulations the value
100 will be found to be a fairly good average figure. The
hydraulioc radius would be initially approximately 0.1l ft.

and would not deorease materially for a considerable
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distence downstream. The surface slope due to friction
would be then epproximately

4 - o

We should expect then in the distance 0.25 ft. from the be-
ginning of curve to a point downstreem that there would be
acoumlated due to friction alone en increment in elevation
above the normal of approximately 0.003 ft. Actually we
observe the following,

R Aotusl 4 Nomal & Increment

ft. ft. f£t. .
0.71 0.18 0.064 0.116
1.0 0.24 0.128 0.112
2,0 0,33 0,250 0.080
3.5 0.34 0.290 0,050

These increments are not only much larger than those indi~
cated for friotion alone but their vaerietion with relative
radius is in the direction oppesite to that which would
obtain were these increments due to friction alone. The
latter feature becomes even more marked if we consider
greater distances downstream. ZEventually the longest ra=-
dius ocurve shows a surface profile dipping below the normal
profile. Additional evidence on these two points may be
obtained from the data in Figs., 15 and 16. In the case of
the very large Froude numbers one might expect a more pro-
nounced friction effect., Consider for example a Froude

number of 70, a depth of 0,13 ft., an hydraulic radius of
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0.04 ft. and a velooity of 17 ft. per sec. The slope due
to friction in this case would be again 0.01. It is ob-
vious without further calculation that the observed dif-
ferences between normal and actual profiles execeed those
which would be caused by friction. No definite trends
with respect to the relation between the relative radius
and the superelevatlion in the case of the high Froude
numbers is observable. The other plottings for lower Froude
nunmbers shown in Figs. 15 and 16 present similar evidence.
It is clear from the available data that a frictional dreg
ias insufficient to explain the observed differences between
normal and actual depths.

The existence of subnormal pressures in the flows
investigated is established by the data shown in the plot-
tings of the individual Runs 175-178 as well as by the
sunmary of thessdate in Fig., 17. In Runs 175-178 values
of k renged from +0.7 to =~0.47, In previous observa-
tions of lesser accuracy values of k as low as «4.0
were observed, In Runs 175-178 the observations for k
were made at a vertical section as close as was possible
to the beginning of the curve,

Subnormal pressures of such a magnitude that they
were actually sub-atmospheric were first observed in ex-
periments performed with the apparatus at Wayne University.
There was at first soms doubt concerning the accuracy of

the pilezometer readings which indicated the sub-atmospheric
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pressures. The possibility of irregularities in the appa-
ratus was considered and thoroughly investigated and the
observations repeated. The results were substantially

the sams. Several months later the runs numbered 174-178
were made at the University of lowa with the results shown
in the plotiings of Figs. 18, 19, 20, 21, and 22, The
sub-atmospheric pressures were again observed although they
were of a lesser magnitude., The lesser magnitude was to
be expected since the Froude number was only 10 in that
series of runs whereas it had been as high as 70 in the
runs mede at Wayne University.

An explanation of the existence of a sub~atmoa~
pheric pressure olose to the free surface of a body of
1iquid has not been undertaken at this time. It may well
be explained by the fact that the pressure asymptoticslly
approaches atmospheric as the distance from the free sur-
face decreases, However, this has not yet been fully
established and serves only as & possible working hypoth-
esis.

The effect of subnormel pressures may best be
understood by reference to Fig. 3. Assume for example
that for F, = 100 and a certain relative radius the
reduction of k from its initial value of unity to a
value of 0.8 oceours with Aak/aé = &, and for a shorter
relative radius and identical Froude number the reduction
is8 to k = 0.6 with aAk/pe = 4.0 . It is apparent
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from the diagram that the resulting depression of the sur-
face will be greater for the sharper curvature, for a given
AS assuming the change in F to be amall., However a
similer set of values for k and ak/ae would yield an
entirely different result for an initial Froude number of
10. 1In this case the situation would be reversed and the
lesser curvature would give the greater depression. The
latter situation 1s apparent in Runs 175-178, It follows
therefore that the extended theory provides a qualitative
basis for the explanation for a portion of the observed
effects of subnormal pressure,

The variation of k with the relative radius and
with F is indlicated from the available data as shown in
Figs. 14 and 17. Short relative radil give small values
of k and high Froude numbers give small k's . The value
of k approaches unity as the relative radius incresses
and as the Froude number approaches unity.

A comparison of the surface contours of Runs 174
and 175 indicatea that the reduction of elevation of the
surface is effected more rapidly with a short radius wall

in place then in the free jet.



Ve SUMMARY AND CONCLUSIONS

(a) Summery

The original objective of the investigation which
was the establishing of prinoiples and the formulation of
a procedure to be used in the design of transitions in
rectangular open channels in which the flow would be at
supercritical velocities, was modified to the extent de-
scribed below. The general characteristics of the flow in
a transition with reversal of wall curvature were investi-
gated thoroughly and on the basis of that study it was con-
cluded that although the general behavior was in sccord with
the theory a quantitative prediction of the elements of the
flow was not feasible at this time for two reasons. First
of these weas that the flow was actuelly very complex and
could not always be broken down into simple flows the ele-
ments of which could be predicted., The second reason was
that the mssumption of hydrostatic pressure distribution
used in the elementary theory and equations developed by
Ippen and Knepp was not fulfilled. As a consequence of
the latter fact neither the elements of the flow in the up-
streem portion of a transition with reversal of wall curva-
ture nor those of the ensuing downstream flow, which was
directly affected thereby, were subject to quantitative

prediction.
An asnalysis, both theoretical and experimental in

character, was made of the flow along a diverging curved
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wall assuming non~hydrostatic pressure distribution to de-
termine the characteristics of the surfece profile. The
resulting equations provide an explanation of the differ-
ences between the observed surface profiles and those pre-
dicted by the theory based upon the assumption of hydro-
static pressure distribution,

The extension of the theory of the propagation of
smell waves in a liquid flowing at supercritical veloocity
to include the situation involving non-hydrostatic pres-
sure distribution end the demonstration that pressurea
less than hydrostatioc and indeed sub-atmospheric may exist
in a flow bounded by diverging curved walle are the princ-
iple features of the investigation,

(b) Coneclusions

The summary of the findings related to transi-
tions with reversal of wall curvature and the conclusion
that in general the flow with that type of boundary is too
complex for complete analysis at present are set forth
above.

The following conclusions summarize the findings
related to the flow bounded by simple diverging curved walls.
The word normel is used to refer to the elements of the
flow predicted by the elementary theory based upon the
essumption of hydrostatic pressure distribution and neglig-

ible frictional effects.
1. Experimental observations establish the fact
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that there is a difference between the actual profiles of

the liquid surface at the curved boundsry and those pre-

dioted by the theory based upon the assumption of neglig-

ible frictional effeots and hydrostatic pressure distribution.
£. The experimental date indicate that the dif-

ferences between the normal and actual surface elevation

are of a magnitude which camnot be explained by the fric-

tional dreg.

3. 'The effect of a relatively long radius in pro-
ducing a large relative increese in the elevation due to
frictional drag was not observed. Occasionally long rela-
tive radii were accompanied by less superelevation above
normal elevation than was found for short relative radii.

4, Subnoxmal pressures were observed at the wall
eand in the body of a liquid flowing adjacent to a curved
wall,

5. The extended theory of the propagation of
small disturbances in a liquid flowing at superoritiocal ve-
locities indicates the same type of differences between
actual and normal profiles as were observed.

6. The presence of a sharply curved wall may
effect a more rapld reduction of the surface elevation of
8 liquid flowing on a horizontal surface than could be
accomplished in a free jet flowing on the same surface at
the same initial Froude number.

7. ‘The existence of subnormal pressures, which
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may be actually sub-atmospheric, at the curved wall of an

open chamnel transition ereates a structursl problem which

should be considered in the design of such structures.
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APPENDIX
(2} Derivation of Equations

l. Wave veloolity with hydrostatic pressure
distridution Y press

For the sake of simplicity the artifice of super-
imposing upon the liquid a uniform motion having the ve-
looity of propagation of the small wave will be used., This
transforms & problem of unsteady flow to one of steady flow.
We shall consider a negative wave, that is one arising from
a depression of the water surface. This wave would move
to the left in Fig., 2., The entire body of fluid will then
be imagined to be moved to the right at the veloocity o
thus holding the wave form motionless. The liquid will then
appear to flow through the wave form towards the right.

It is assumed that the velocity is uniform
throughout the depth, the pressure distribution is hydro-
static, and the frictional losses are negligible,

The momentum equation 1s written for sections

1l and 2 of Fig. 1 in this manner:

The continuity equation gives the following information,

. ,).”‘ .

T — o

Since the pressure distribution is hydrostatic it follows
that . Py 0 h L et

g - z » PR—
4 i . o - !
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Substitution of this value for (P, = Pg) above gives

; s
NV BN Ny
e Fois 7 i - ot r
3 [ ) [ ~ ¢
¢

and upon eliminstion of Cp by means of the continuity
equation there results,

which may be written

“ / S N P AR - N
MG A RO SRS S R S A &
T ’ -4 iy v e g P

2 i ! 2 i
Z o o,

Dividing both sides of this equation by 4; - dg we have:

- T P N

= ')“{..t{._; = O,
e
=

which may be simplified by taking note at the assumption

of a small wave in which case d,/d4g 1s approximately
unity end (4, + dg) 1is approximately 24. The simpli-
fied form is,

g O ‘1"‘ = 2 {/ 'j/}
\w,’ N Ay
or in a more familiar fomm
= _(' X
o j <

2, Depth change upon passing under a wave front
From the momentum equation given above in the

derivation of Bquation (1) we have upon substitution of

4d for 4, - dg,
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which upon expansion and elimination of terms of higher
order becomes:
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and simplifies to

or ﬁdf’gd%—&z}w Zcac o
We have shown that ¢ = 2@, therefore
2gdad= Zcacd
oF ﬁad w Cac

Now from the geometry at the vector diagram

O o= Ll 5;??}9

and
o 4 4 c}/v"f?r/ (Brae) = w cusf
or o “. 4
4c = UB

Substituting for e¢ and aA¢ we obtain:

LT3 A%

&l d = g ceskl
or s P d L6 (4)

o
3. Wave velocity with non-hydrostatic pressure distri-
bution.
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The simultaneous solution of Equations (6), (7),

and (8) proceeds as follows

e, d - = DT
}L’? =& L fj; = A, T
2 P
W - 7 e - g
P /:Z r.-”:) (C“,C/Z =(RJ k;

(8)

(7)

(8)

Upon substituting in (7) the values of Py and Pg from

Equation (8) we obtain:

L iyl ofetd, - o]
;“;z;tj“ f.. A/i h AZ%J 7L Y e
But from the continuity Equation (8) we have
=)
O, o= A
2 dz
whioch permits the following simplification:
o7 2. 4t ¢ Yol - /
" . A I o= ? i - ‘m»' :
__,5.‘._... L ﬁi'-.j’ l\‘,_'\-zj ‘w——d’L ; L’ﬁ

This may be simplified considerably in the following

manner., Faoctoring, dividing and multiplying by k,
obtain
L e </ , 'l
sk [ fag'fs S8 [ g -]
..A "4’
or
GE ol e O ) e T ]
£ b ’ e

and upon dividing by 4; - dg,

we
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4, Wave angle
Since s8in g 2
we have,

Sod ool AT
g = i A | P - uy T " |
S04 N T g U 7

5. Depth chenge on passing under a wave front

From momentum considerations we have:
¢ e Z ; £ g a "‘f
’ffﬁf,v [ /(i-;’.?/ -y {x';f"rdﬁi}‘j = O Jdac
or

I i i & .
i [ 7 A Y / = 00 &
b

which becomes
Z z‘r ad

J vol s

A

Upon rmmngins terms we have,

o/
- I fi i ¢ 5":0 ' ’ A
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e t” la > { ’
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(9)



This may be written

, Cac
aef = TSI e E S0 Koy
W i = p: J
- ! ~ :

From the geometry of the vector dlagrem:

I . i :
PO A Y

e =0
' I S . 191 v
Fogy (AL
j &
oo
A ‘—"/h

Now substituting this value for - o¢ and u siné for

we have:
A *}} e -fi‘j-w”‘é;*@' = =2 S f.i
,qu_' : o /’y P /‘.’
which may be simplified to:
;e s
A = 7 ( - fang 4@ G0 fic. )
\,f e

Now let ky = ks = , k and we have

[ o ; (_;1" A ’."(
VY s T g E a8 T 2
A < K

or N o
d-jg’ = -é'i"" '7“{"3 iF S - ..'::.‘i C'.."If_ /{'__\ b
a8 A ‘:; ’ ik a &

For large valuesof the Froude number one may consider

tan 4w s8in

‘

¢

(11)

Then evaluating sin . from Equation(l0) and equating 1t

to tan A we have,
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L9 . o / 997 b e gk ak i Lod ok
a6 /G v e & L L4 - Sk OF
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!
therefore,
N / . bk o =) ok
Md......gf = o e b/f © 4l 7 e AE
L47 A -

Transpose the second term on the right and factor out
adhe ,

4< ol Ak [ ak o
l‘i' o I I - f"’ i o Pl
KoLK FT g ElE dYR 7

then

ad -
aé T T
%’i A gof 2
Square both sides,
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e : df o
(1 e/ At iz 2
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o ek L ydR A E gy -
a’/ - 2’ ‘:':,f; 1 é"(aé«/ b ?/ "LCV{
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or more simply
i 2
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8. Criterion for normal angular depth gradient
From Equation (15) which is

ao . s f p .

e ;‘;’{ J IJﬁ‘ & — o I

=8 _ gF i"ﬁE “ 05 3]"”f*/ i (15)

‘Ei-g-fy /h
we may obtaln, upon equating Z: /{ d;g to unity, the
following,

AL ,;e’ LA - -
ae Uz &/‘*Vﬁ# i

which becomes, after transposing terms and squaring both

sides,
ra J ’."\L ﬁ’(i e
( ?Fﬁ 4 47;&:‘/{.) = &2 ) "'/{’/.f
or
Sy ak (o d 7y
za&. Py o f""‘ vk P A% "'\5",:/ ‘\"‘/:.f\,
’HP/

Collecting terms and simplifying we obtain,
4L Lo = ZuF
(b) Plottinga of Experimental Data
Plottings of the type shown in Figs. 18-22 have

been made, in a form suitable for reproduction, of the data
for al)l the runs deemed usable. These drawings are on file
in the office of the department of mechanics and hydraulics
of the State University of Iowa with the master copy of the

manusoript.
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