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I. INTRODUCTION

In an effort to develop a method to be used In de

signing transition sections for rectangular open channels in 

which the flow would be at supercritical velocities the study 

described herein was made* It was realized that this problem 

is closely allied to that of supercritical flow in curved 

open channels! hence due consideration was given to the re* 

suits obtained by Ippen and Knapp at the California institute 

of Technology in the Investigation of such flows.

References in current periodical literature to some 

unusual and obviously Incompletely understood phenomena as* 

sociated with flow in transitions in open channels served as 

an incentive to carry on the work. It was at first believed 

that in addition to an experimental investigation a complete 

theoretical analysis might well be possible. However, as the 

work progressed a number of revisions, Including a consider* 

able narrowing of the scope of the investigation, were found 

imperative.

The original plan envisaged the development of de* 

sign procedures for various types of transitions. A tran

sition from a rectangular channel of a given width to one of 

greater width, effected by means of walls forming reversed 

curves tangent at either end to straight parallel channel 

walls, was the first to be studied. It was soon apparent 

that this type of transition involved a flow pattern far 

too complicated to permit complete analysis at the present
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time* A transition involving simple curved walls tangent 

at either end to straight walls which are initially paral

lel and which diverge downstream from the curved section 

was found to he the most complex structure the design of 

which could he undertaken with some degree of confidence.

The experimental work involved a large number of 

experiments on transitions with reversal of wall curvature 

as well as with the simpler diverging walls. A wide range 

of pertinent ratios of lengths involved In the geometry of 

the transitions as well as a wide range of Froude numbers, 

the latter being limited by the velocities obtainable in 

the models, were used to facilitate the formulation of an 

empirical solution in the event that no analytical one was 

found.

A theoretical analysis of the flow bounded by a 

diverging curved wall with non-hydrostatlc pressure distri

bution with particular reference to pressures less than 

hydrostatic was made and an Interpretation of the experi

mental data in the light of this analysis is given. Equa

tions were derived which aid in making a qualitative study 

of the experimental data, but which are not as yet suffi

ciently complete to predict quantitatively the elements of 

the flow at a diverging curved wall or in the main body of 

the liquid in the channel. The limitations upon the use 

of the data, which were obtained with relatively small 

structures, and similar data on small models for predicting
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the elements of the flow In a full scale channel are set 

forth*
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II* PROPAGATION Of DISTURBANCES IN 
SUPERCRITICAL FLOW

(a) Wav© velocity with hydrostatic 
pressure distribution

When water flows in an open channel at a velooity

in excess of the velooity of propagation of a small wave in 

water of the given depth, the flow is said to be at super

critical velooity, the critical velocity being equal to the 

elementary wave velocity. Small disturbances such as in

crements or decrements of the water depth are propagated at 

wave velocity and cannot proceed upstream in supercritical 

flow* The value of the elementary wave celerity c rela

tive to the fluid is given by the expression,

in which g is the acceleration due to gravity and d is 

the depth of the water* The derivation of this equation 

and all those described herein may be found in the appen

dix* It is assumed that the wave height is small and the 

wave length great relative to depth and that the pressure 

distribution is hydrostatic*

such as would be the result of continuous flow past a 

change in the direction of a channel wall, a wave front is 

formed, starting at the disturbance point and extending

c (1)

(b) Wave angle

If a small disturbance is continuous in nature
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into the flowing water at an angle with the original direc

tion of flow usually termed p  , the wave angle. Ibis 

angle ie defined by the expression

sin/3 m S. (2)

in whieh o is the ware velocity defined by Equation (1) 

and u is the mean velocity in the original direction of 

flow. Upon substitution of the expression for c we have,

sin ft - J (3)

or sin p » ig* (3a)

where f is the Froude number defined by the expression

(c) Depth change on passing under a ware front

As the water passes under a ware front, the com

ponent of momentum perpendicular to the ware front under

goes a change in magnitude proportional to the negative 

change in depth of the water, whereas the component paral

lel to the ware front remains unchanged, since the eleva

tion of the surface along the ware front is constant. Ih© 

changes in depth and components of velocity are represented 

in Fig. 1.
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**

Fig. 1

A single derivation on the basis of continuity, 

geometry of tbe vector diagram, and tbe momentum principle 

leads to the following equation for tbe increment of depth 

in terns of angular change in the direction of the bound

ary, wave angle and velooity of the water.

Ad * ip tanf  -Ae (4)

If the pressure distribution in the body of the 

liquid may be considered essentially hydrostatic and if 

friction losses may be ignored, the flow along a curved 

boundary may be successfully analysed on the basis of the 

elementary principles set forth above* A most successful 

analysis of this type was made by Ippen and Knapp in ”A 

Study of High Velooity H o w  in Curved Sections of Open 

Channels”, Pasadena, California, March £9, 1936.

In that study an equation derived on the as sump-
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tlon of constant velocity along the wall proved best in 

describing the wall profile of the water surface along the 

curved wall* Ihis equation will be used herein for pur

poses of comparison and is given here,

in which the subscript aero refers, as it will throughout 

this discussion, to conditions at the beginning of the 

curved wall# The significance of the terms in Equation 

(5) is as follows;

d « depth of the water 

Z3 m the wave angle

e * the total angle between the tangent 
at the beginning of curve and the 
tangent at the point at which the 
depth is d .

F » the Froude number defined by the ex
pression 2

(a) Wave velocity with non-hydrostatic 
pressure distribution

Let it be assumed that the pressure distribution 

at the wall and within the body of the liquid is not hy

drostatic# In Fig. 2 is shown a section similar to sec

tion A-A of Fig# 1 taken perpendicular to a wave front, 

which will now be defined as a line along which there la 

no change of momentum of the liquid.

F » u
gS
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The forces P^ and Pg per unit width acting 

on the ends of the free body are the non-hydros tat ic pres

sure forces which will be represented thus,

g 2
P^ m and Pg • (6)

in which /Q Is the unit density of the liquid and the 

coefficient. kx and k2 repreeent the factor, by which

the total hydrostatic pressure corresponding to the depths 

d^ and dg must be multiplied to obtain the actual total 

pressure# It will be assumed that the friction forces act

ing on the element of liquid are negligible In comparison 

with the pressure forces*

We may now proceed to a dentation of the veloc

ity of propagation of a small wave with conditions as 

described above* The velocity Is assumed to be uniformly 

distributed throughout a vertical section. The momentum 

equation is written in the following form,
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> - I>
1 B P (®i d2 " °1 dl ) (7)

From the continuity relationship we have,

©1 ^  m dg (®)

Assume now that the wave height is small, that la d^ * dg 

la a very small quantity compared to • the simultan

eous solution of Equations (6), (7), and (8) leads to the 

following equation for the wave veloolty c,

o
4 * (ii - "'*«)

(9)

For the case of hydrostatic pressure distribution 

ki*» kg » L  In this ease Equation (8) reduces to 

Equation (1) which gives the velocity of propagation of the 

elementary wave with hydrostatic pressure distribution

(e) Wave angle

By definition the wave angle is given as the 

ratio of the wave veloolty to the mean velocity of the liq

uid. Equation (£) thus gives the sine of the wave angle 

in the general form. Equation (3) gives the value for the 

particular case of hydrostatic pressure distribution# The 

following equation gives the sine of the wave angle for 

the case of non-hydrostatio pressure distribution,
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sin jS
kxd

(10)

which in turn reduces to the equation for the ware angle 

with hydrostatic pressure distribution when k * 1.

(f) Depth change on passing under a ware front

Employing the momentum equation and with regard 

for the geometry of the rector diagram of fig. 8, the fol

lowing equation for the depth change experienced by the 

liquid passing under a ware front may be derired9

A& - g-L tan/3-ae * |(i - %  \ (11)
kg^

which may be reduced to the more significant form

f !  - f- r- &  +W T ^ T f/ as)
Ae 4k L a& f\ae/

through the assumption, which is valid for large Fronde 

numbers, that sin/? » tan/7 • for the case of hydro

static pressure distribution k « 1 and Akfae » o and 

Equation (11) will reduce to Equation (4) whioh was de

rived specifically for the case of hydrostatic pressure 

distribution, xn using ^k to represent k^ - k2 it is 

apparent that the sign of Ak/̂ e is positive as is the 

sign of when k and d respectively increase in

the direction of propagation of the ware indicated in
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Fig* 2*

(g) Interpretation of equation®

Equation (12) may be employee to make a very sig

nificant eoaparison between the rate of change in the depth 

ah/aq which may be expected with non-hydrostatlo pressure 

and the corresponding rate of change of depth if the pres

sure distribution were hydrostatic* throughout the follow

ing discussion, for the sake of brevity the term "normal” 

will be used to refer to elements of flow with hydrostatio 

pressure distribution, and the subscript n will denote 

the quantities which are elements of the normal flow.

If Equation (4) is solved for and if

tan/? and u and g are evaluated in terns of the Fronde 

number there results;

If large values of F are to be considered the simplifica

tion of dropping the factor unity In the denominator may be 

made and the following simple expression results:

ndAe to the normal gradient may now be expressed in the 

form,

(13)

dk » d'F^ (14)

The ratio of the expected angular depth gradient

(A ? K d-fF'
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A criterion any now bo established which will indicate for 

any given act of conditions whether the angular depth gra

dient & d/ae nay be expected to be greater or less than 

the normal value. If the ratio expressed in Sanation (16) 

has the value unity the angular depth gradient with non- 

hydrostatio pressure distribution will be equal to the 

normal value. Setting the ratio equal to unity and reduc

ing it to simplest form one obtains for the criterion the 

expression(

| |  - E l *  (16)

It Is now apparent that for any given local value 

of the Froude number there is a certain combination of the 

factors describing the characteristics of the flow which 

will result in an angular depth gradient equal to that for 

normal flow. However, if the characteristics of the flow 

are such that the combination of terms on the left hand 

side of Equation (16) is greater or less than the quantity 

2 F^ the surface slope w i n  be less or greater than normal 

respectively. Hiat such is the case is apparent from Fig.

2 wherein are plotted values of the angular depth gradient 

ratio for various assumed combinations of the variables 

Ff k and Akfae • For any given values of F and k 

an Increase or decrease in Ak/ae .will result in a de

crease or increase in the angular depth gradient ratio 

respectively, which demonstrates the above statement.
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Uhe same criterion will indicate the relative 

value of the wave angle* However in this case values of 

the quantity on the left of Equation (16) greater or less 

than 8 f ¥  indicate values of greater or less than 

normal respectively. Obviously the same criterion applies 

to the wave velocity since the wave velocity divided by 

the average velocity of the flow is equal to sin p • In 

this connection an interesting form of the equation for the 

angle is obtained by a transformation similar to that 

used in obtaining Equation (IE), this equation is,

sin/? *
z

4  ♦ (l * 16Fk
* (17)

Ihese equations may be used to advantage in dis

cussing the flow at a curved boundary since it has been 

established experimentally that the pressure at the wall 

is in certain cases non-hydrostatic. It is at present im

possible to integrate the equation for A&fae to obtain 

the depth directly as a function of the variables F and 

k since these must first be determined experimentally or 

a method must be devised to relate the factor k directly 

to the curvature of the surface, the Froude number and the 

depth. Ihe Interdependence of these quantities is apparent 

from the fact that the subnormal pressure results from 

vertical acceleration, which is a function of the surface 

curvature, which in turn depends upon the Froude number
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and relative curvature of the wall* A method for the de

termination of the surface contour® in supercritical flow 

based on the analogy with supersonic gas flow® ha® been 

devised and Is admirably set forth by Hrnst Preiswerk in 

a work which has been translated and published by the 

National Advisory Committee for Aeronautic® in Technical 

Memorandums #954 and 955* In a series of experiment® 

carried on at the Institute for Aerodynamic® of the 

Sidgenoessische Teohnisch© Bochsehule, Zurich, the validity 

of this method was demonstrated* However, it is applicable 

only when the vertical components of the acceleration of 

the fluid are negligible* Obviously such a method cannot 

be used satisfactorily for the analysis of flows discussed 

herein* A similar method of attack would be desirable for 

that type of flow, but the formulation of such an analysis 

is beyond the scope of the present work which seeks only 

to point out the existence of the problem and the general 

characteristic® of the flow*

(h) Limitations

In order to interpret the flow properly in terms 

of the equations set forth above, the following factors 

must be kept in mind* In deriving the equations a wave 

front was defined as a line along which there is no change 

in momentum of the liquid* A wave front is therefore no 

longer fully characterized by the feature that all points 

on it have the same surface elevation, as was the case
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for the elementary wave theory* Bather the wave fronts 

are lines In the direction of which there Is no net accel

erating force aoting on the liquid* Surface elevation 

contours will not serve now as wave fronts since the true 

wave front is also determined in part by contours of con

stant mean pressure* However, the characteristics of the 

surface contours do to some extent indicate the shape of 

the wave fronts, and are useful in studying certain fea

tures of the flow* The wave fronts are determined by the 

fact that the quantity fed® must be a constant along these 

lines* This follows from the fact that there is no net 

force in a given direction when F^ - Pg is aero* From 

the definition of k the necessity for the constant value 

of kd® follows immediately*

It is to be noted that the increments 4d and 

Ak are defined as the increments in d and k respec

tively perpendicular to the wave front* The Increment 

Ae in the ratios adyfee and &k/ae indicates the change 

in direction of the velocity vector upon passing under the 

wave front* The directional character of these ratios is 

important since the pressure gradient varies with the 

direction in which it is measured*

In order to evaluate the factor k from the ex

perimental data it is necessary to determine the unit 

pressure at various points on a vertical line extending 

from surface to bottom of liquid* This would make poss-
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lbl« a computation of the total pressure on a vertical area* 

By definition k Is the ratio of this total pressure to 

the hydrostatic pressure on an equal area similarly located*

(1) Summary

To summarise the principle features of the ex

tended theory of the propagation of small disturbances In 

supercritical flow the following statements may be made*

1* The wave velocity and wave angle as well as 

the angular depth gradient may be greater or less than the 

normal values depending upon the relative local values of 

the quantities k and Akfae for a given ftroude number*

2. If the angle /3 is greater than normal the 

angular depth gradient will be less and if the angle 

Is 1 ess than normal the angular depth gradient will be 

greater than normal*

3* In order that no disturbance may be propa

gated It is not only necessary that the local value of k 

be aero but also that ak/ae be aero* Ihis is apparent 

from a study of Equation (9) for the wave velocity*

4* Wave fronts do not coincide with the surface 

elevation contours of the body of the liquid In the channel* 

3he determination of the location and form of the wave 

fronts requires a knowledge of the pressure distribution 

within the fluid*

3* Prediction of the elements of the flow in

cluding the surface profile at the curved wall in any but
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an empirical manner must await further analysis of the me- 

ohanlc® of the flow with special reference to the evaluation 

of the pressure in terms of the surface slope, the relation

ship being dependent upon the components of the accelera

tion within the body of the liquid*

(J) Effect of friction

If a viscous liquid flows at supercritical ve

locity on a horizontal surface in a channel of uniform 

width the loss In mechanical energy due to conversion into 

heat by the viscous forces will result in an increase in 

depth of the liquid* This may be verified either by a di

rect consideration of the specific energy diagram or by an 

Inspection of the differential equation of varied flow* 

This equation in general form is,

dd
dy.

u L
~ r?

I - S&

where B is the hydraulic radius, s0 is the bottom 

slope, c is the Cherny coefficient, x is the coordinate 

in the direction of which the velocity u is taken* When 

the velocity is supercritical the team which is the

Eroude number is large compared to unity* Also for the 

case of flow on a horizontal surface »0 is zero* The 

equation then reduces to,

dd — cV?

d * /

This quantity is obviously positive indicating an Increase
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la depth. this contrasts with the decreasing depth of sub- 

oritioal flow* It may he concluded therefore that the 

effect of friction on the depth would he to increase it 

above the value which would he expected for a perfect fluid.

(k) Description of flow in transitions 

Since transitions are combinations of curved and 

straigit channel walls, a good idea m y  he formed of the 

nature of the flow which m y  he expected on the basis of 

the principles set forth above* In Figure 4 are shown two 

simple types of transitions. Consider first, to eliminate 

complicating factors, a transition of the type shown in 

Fig. 4a, of very great width. As the water enters the 

diverging section, the surface at the wall will fall in 

accordance with the elementary theory and Equation (0) 

will adequately describe the surface profile at the wall 

providing the assumptions made in the derivation are sub

stantially fulfilled, i.e., vertical acceleration is neg

ligible and friction losses may be ignored. In order that 

such be the case, the curvature must be slow enough to in* 

sure hydrostatic pressure distribution and yet not so slow 

that the friction effects are appreciable. She surface 

contours will then be straight lines making the angle/? 

with the wall at all points, this angle p  will decrease 

in magnitude along the wall as the depth decreases since 

observations indicate that the velocity remains essentially 

constant.
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In fig# 5 is shown a sketch of the flow along a 

diverging boundary which for the sake of olarlty in de

scription is shown as a series of short straight segments 

each making the angle with the preceding segment*

She wave fronts then appear as lines with finite spacing* 

Ihe streamlines will be as indicated in the sketch* m e  

spacing of the streamlines gradually becomes greater as 

the flow proceeds along the boundary* As the water passes 

under each successive wave front it changes in direction 

so that the flow is always parallel to the corresponding 

segment of the wall* In the case of a smooth curve the 

flow would be modified to the extent that the wave fronts 

would be spaced at infinitesimal distances, and the stream

lines would be smooth curves.

In Fig* 6 is shown a transition of a slightly 

more complicated type* m e  flow up to the point of in

flection of the curve will be as previously described*

After passing the point of inflection of the curve the 

effect will be similar to that in the initial part of the

channel but with Increasing rather than decreasing depth 

and with the streamlines becoming closer spaced rather than 

wider spaced as before* me ultimate depth attained at 
the straight w a n  will be Identical with the initial depth

and the spacing of the streamlines will assume the original 

value* m i s  restoration of initial conditions will occur

providing there is iioi boundary in this
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region, the boundary drag is negligible and the waves are 

of the same type for both convex and conoave curvature of 

the wall, if these conditions are fulfilled the liquid 

will be moving in the same direction with undlminlshed 

velocity after passing the curved wall. There is there

fore no net change in momentum, and consequently no change 

in depth.

If a channel of the first type is of finite width 

waves crossing from the opposite sides of the channel will 

augment the depth change at all points of intersection, in 

accord with the principles of wave interference* The sur

face contours, moreover, w i n  then be curved lines since 

interference of waves augmenting the depth change will pro

duce lesser depths in the central region of the flow in 

the channel along a given wave front than exist at the wall 

It is therefore necessary to go upstream to find a point 

with a depth equal to that at the wall on a given wave 

front. The angle between contours and w a n  will then equal 

the wave angle only at points unaffected by waves crossing 

the channel* Similarly in a transition of the second type 

the negative waves crossing the channel will reduce the 

effect of the positive wave* The surface contours will 

again be curved lines*

If the friction losses may not be neglected, 

their effect will be evidenced at the wall by an increase 

in the elevation of the water surface and a corresponding
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distortion of the wave fronts*

If the pressure distribution is not hydrostatic, 

the effects indicated in the development of the equations 

of wave velocity, wave angle, and change in depth for non

hydrostatic pressure distribution may be expected* Pro

ceeding again from the simple to the complex, the flow at 

the diverging curved wall may first be discussed* As the 

liquid enters the diverging section the deviation of the 

w a n  from a straight line produces a reduction in the wall 

pressure, which in turn produces a vertical acceleration of 

the liquid* this pressure reduction has an immediate effect 

upon the wave velocity, wave angle, and slope of the liquid 

surface, in that these quantities will be either larger or 

smaller than the normal values depending upon the relative 

values of the factor k and the ratio Ak/A& in relation 

to the local Froude number* A quantitative evaluation of 

k in terns of the surface slope and Fronde number has not 

yet been made, hence only trends may be indicated*

T&q relative radius and Fronde number together 

determine the magnitude of the pressure reduction* For 

short relative radii, or large Fronde number, the vertical 

accelerations of the particles are large; consequently a 

considerable reduction in pressure is to be expected* Fig*

3 is a graphical representation of the equation for the 

angular depth gradient from which may be obtained definite 

information on the general form of the surface curve* If
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the liquid is assumed to outer the channel with uniform 

Telocity throughout the cross section, hydrostatic pressure 

distribution, and with negligible boundary drag the values 

of k and the ratio Ak/&& would b© unity and zero re

spectively. The point in Fig. 5 indicative of this initial 

condition would H e  on the horizontal line indicating the 

value of ratio ^  *^*1 to unity. Its position

on this line would be determined by the initial Froude 

number.

Ifce use of the diagram to predict surface pro

files is not feasible since there is one degree of in

determinancy involved due to the fact that k has not 

yet been expressed as a function of F and the relative 

radius. The diagram will be used in the analysis of flows 

of this type for which data are available. The streamline 

diagram and surface contour diagram for a flow of the type 

under discussion would constitute a modification of those 

shown in Fig. 5 for the case of hydrostatic pressure dis

tribution. The chief differences would be curved rather 

than straight wave fronts, and different angles between 

contours and wall and wave fronts and wall.

The effects of the non-hydrostatic pressure 

distribution on the flow in a transition of the second 

type would center primarily in the upstream portion of the 

transition. However, secondary effects would be evident 

in such a transition of finite width since the waves cross
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lug the channel would have different angles than those of 

the normal flow. She resulting reduction in supereleva

tion would differ then in magnitude from that of the nor

mal case.
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III. LABORATORY INVESTIGATION

The nature of the apparatus used in the experi

mental work may heat be understood by reference to the 

photographs in Figs. 7 and 8 and the sketch In Fig* 9*

These show the general arrangement of the apparatus at both 

the University of Iowa and Wayne University* The two sets 

of equipment were essentially the same in principle, pro

viding for the introduction of a Jet of water rectangular 

in cross-section to a channel with walls which formed a 

transition of the desired type* It was assumed that only 

one-half of the channel need be used, the center-line be

ing simulated by a plate of glass forming a straight 

vertical wall, and the curved wall being simply a piece of 

pyralln so constructed that it could be formed to the de

sired plan and held in place*

As may be seen in Figs* 7 and 9, the source of 

water at the University of Iowa was a ten inch distribu

tion pipe coming from the constant head tanks* The flow 

from this pipe was controlled by a six inch valve located 

in a pipe leading from a tee in the main line* The water 

passed through a weir box equipped with a 90° v-notch 

weir and hook gage to a channel in which the flow was 

quieted by means of baffles, thence through a device which 

provided a means for varying the size of the jet of water 

Introduced to the channel* The jet Issued from a tube, 

rectangular in cross-section with contractions suppressed
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Fig. 7

Fig* e
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on two sides by moans of cylindrical surfaces of one foot 

radius, the other two sides being the bottom and one side 

of the approach channel* This equipment made possible the 

production of a Jet with minimum dimensions of 1" x 1" and 

maximum dimensions of ©" x 6". All combinations of the 

intermediate depths and widths were possible but limita

tions on the quantity of water and Telocity available fixed 

the maximum sine at about twenty-four square Inches in 

cross-sectional area* The transition section was con

structed on a horizontal plane surface which consisted of 

composition board mounted on a suitable structural frame, 

painted and marked off in a rectangular coordinate system. 

Details of a transition section may be seen in fig* 10*

She apparatus used at Wayne University differed 

in one essential respect from that described above —  no 

adjustment of the size of Jet was possible* Uie Jet was 

formed by means of a galvanised iron transition plena from 

a three inch circular pipe to a one and one-half inch 

square tube* The Jet Issued directly upon a horizontal 

surface formed by a two-inch plank mounted on a structural 

frame. The surface was painted and marked in a rectangular 

coordinate system as was the one at the University of Iowa. 

The discharge was determined by means piezometers in the 

transition section of the tube which was calibrated in 

place* This tube is shown in greater detail in Big* 11.

The water was pumped directly to this tube by a centrifugal
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ptmp from a sump with no provision for constant head main

tenance. No appreciable head variation was noted.

At both the University of Iowa and Wayne Uni

versity the depth of the water was determined by means of 

a point gage mounted on a traveling bar which gave full 

freedom of motion in a horizontal plane. The location of 

the gage was determined In terms of two coordinates from 

the origin of the coordinate system marked on the channel 

bottom by means of graduated tapes and Indicators attached 

to the traveling bar and gage Itself. The elevation of 

the water surface was determined by point gage readings 

on the surface and channel bottom.

With the apparatus described above it was poss

ible to determine the quantity of water flowing in the 

channel and the depth at any point within the boundaries 

of the transition. By direct computation the location of 

surface contours and the shape of surface profiles could 

then be determined*

Additional equipment was used in several studies 

to secure certain information in addition to that which 

could be obtained with the apparatus described above, 

ft&e equipment consisted of a channel with sloping bottom 

Illustrated in Tig. IS, piezometers in channel bottom and 

walls and threads attached to the channel bottom, the 

latter providing both visual and photographic indications 

of the direction of the velocity vectors at specified

32
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points in the channel#

In a majority of the runs, notably those made at 

the University of Iowa during the summer of 1939, the ob

ject was simply to determine the elevation of the liquid 

surface within and beyond the transition section* She pro

cedure under these circumstances was simply to establish 

the conditions desired by forming the wall to the requisite 

form, providing a jet with the necessary cross section and 

establishing a flow with the specified Froude number, and 

then to make as many observations with the point gage on 

the water surface as was deemed advisable*

In later runs, when the importance of the pres

sure distribution had been realised, more numerous observa

tions on the elevation of the surface of the liquid were 

made and the pressures at certain specified points were 

determined by means of piezometers*
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IV# AHALVSIS OF EXPERIMENTAL DATA 

(aj Transitions with reversal of wall curvature 

The essential findings of this study are summa

rized briefly in Fig# 13 wherein is shown the ratio of the 

maximum depth along the curved wall d^ to the initial 

depth expressed by the ratio da/d0 as a function of the 

initial Froude number, with the pertinent geometrical ratios 

indicated in the legend# In Fig# 4 is shown the nomen

clature used herein on a sketch of typical transitions# The 

use of the ratios m/bc and b0/bo was based on a study of 

the Influence of the fundamental ratios m/d0, b0/d0 and 

be/d0 which indicated that the use of the product m/d0 x 

d$/bo * xn/b0 was justified since all points representing

data based on transitions with equal values of this produot 

of length ratios lay on the same straight line# A similar 

situation existed with respect to the ratio b0/bo •

The principle feature of this diagram is the fact 

that it conforms to expectations on the basis of the ele

mentary wave theory in a general manner# The ratio d^/dQ 

exceeds the value unity for only a few cases which may be 

explained on the basis of h i #  local vertical accelerations 

at the downstream point of tangency between curve and 

straight wall. At low Froude numbers the value of dg/dp 

la low, since the negative waves, making large angles with 

the original direction of flow, cross the ohannel and re

duce the superelevation of the water surface# In long 

curves, which are indicated by large values of m/bo» a



www.manaraa.com



www.manaraa.com

37

similar effect Is noticed, since the wave fronts, even 

though making small angles with the wall, cross the channel 

within the limits of the transition and reduce the super* 

elevation*

fhe flow in the upstream portion of this type of 

transition is identical with that in a transition without 

reversal of wall curvature* The analysis of the data for 

this part of the channel will he carried out in the next 

section which relates only to flow in a channel hounded hy 

diverging curved walls and strai^it tangents*

A quantitative analysis of the reduction in super* 

elevation hy the waves crossing the channel is not feasible, 

since the flow with subnormal pressure is not yet subject 

to complete analysis even when the waves do not cross with

in the limits of the transition.

(h) H o w  at diverging curved wall

The theory of the propagation of small disturb

ances in a liquid flowing at supercritical velocity was 

extended to include the situation wherein subnormal pres* 

sures exist within the body of the liquid in an effort to 

explain differences which became evident during the invest* 

igation between actual surface profiles and those predicted 

by the theory based on normal pressure distribution* In 

order to determine the explanation for these differences 

between the predictions of the elementary theory and actual 

observation it is necessary to establish certain facts*
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Sines the elementary theory assumed that the 

friction effects were negligible and the pressure distribu

tion was hydrostatic, laok of conformity with either of 

these assumed conditions would merit consideration. It has 

been shown previously that the friction at the boundaries 

would tend to increase the surface elevation. The exist

ence of a non-hydrostatlc pressure distribution could have 

the effect of either raising or lowering the elevation 

above the normal, depending upon the relative radius and 

the iroude number*

It remains therefore to either establish the 

frictional drag as the explanation for the difference be* 

tween normal and actual profiles or to eliminate it from 

consideration and to establish or disprove the existence 

of subnormal pressures and discuss the possible effects if 

the existence of such pressures is demonstrated, , In order 

to carry out the necessary analysis of the experimental 

data the plottings shown in Figs. 14, 15, 16, and 17 were 

prepared.

In studying the effect of frictional drag it is 

first necessary to establish, if possible, the probable 

magnitude of the surface slopes due to this factor alone. 

Secondly, the relative magnitude of the effect of friction 

in various cases should be evaluated. Bie first of these 

points is simply handled by confuting the magnitude of the 

surface slope for a general case by means of the varied
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flow equation* As has been shown previously* this equation 

reduees to the following foim for large Frou&e numbers with 

flow taking place on a horizontal surface*

-u2/ e^R 

1 - u2/ gd

Oils equation may also be written more simply in the fol

lowing form,

This equation may be used to determine approximately the 

surfaoe slope due to frictional drag alone. The approxima

tion lies chiefly In the value of Chezy’s coefficient, tab

ulated values of which hare bean evaluated for uniform flow. 

The second point ia concerned chiefly with the fact that 

the longer the curved surfaoe along which the liquid is in 

contact the greater should be the total effect of the 

frictional drag.

To study these two points Figs. 14, 15, and 16 

will bs useful. In Runs 175-178 the initial Froude number 

was 10, the initial depth waa approximately 0.53 ft., and 

the initial velocity 10 ft. per sec. The value of Chezy'a 

C was not determined but for rough calculations the value 

100 will be found to be a fairly good average figure. The 

hydraulic radius would be initially approximately 0.1 ft. 

and would not decrease materially for a considerable
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distance downstream* The surface slope due to friction 

would he then approximately

H  * 0 .0 1

We should expect then in the distance 0.25 ft. from the be

ginning of curve to a point downstream that there would be 

accumulated due to friction alone an increment in elevation 

above the normal of approximately 0*005 ft* Actually we 

observe the following,

4-4

R Actual d Normal d Increment
ft* ft. ft. ft.

0.71 0.18 0.064 0.116
1.0 0.24 0.128 0.112
R.Q 0. 33 0.250 o.oeo
3*5 0*34 0.290 0.050

These increments are not only much larger than those indi

cated for friction alone but their variation with relative 

radius is in the direction opposite to that which would 

obtain were these Increments due to friction alone* The 

latter feature becomes even more marked if we consider 

greater distances downstream* Eventually the longest ra

dius ourve shows a surface profile dipping below the normal 

profile* Additional evidence on these two points may be 

obtained from the data in Figs* 15 and 16* In the case of 

the very large Fronde numbers one might expect a more pro

nounced friction effect* Consider for example a Fronde 

number of 70# a depth of 0*15 ft*, an hydraulic radius of
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0*04 ft# and a velocity of 17 ft# per sec* The slope due 

to friction in this case would h© again 0#01. It is ob

vious without further calculation that the observed dif

ferences between normal and actual profiles exceed those 

which would be caused by friction* Ho definite trends 

with respect to the relation between the relative radius 

and the superelevation in the case of the high Frond© 

numbers is observable* The other plottings for lower Froude 

numbers shown in Figs* 15 and 16 present similar evidence*

It is clear from the available data that a frictional drag 

is Insufficient to explain the observed differences between 

normal and actual depths*

The existence of subnormal pressures in the flows 

investigated is established by the data shown in the plot

tings of the individual Ions 175-178 as well as by the 

summary of these data in Fig* 17. In Runs 175-178 values 

of k ranged from +0*7 to -0.47* In previous observa

tions of lesser accuracy values of k as low as -4.0 

were observed* In Runs 175-178 the observations for k 

were made at a vertical section as close as was possible 

to the beginning of the curve*

Subnormal pressures of such a magnitude that they 

were actually sub-atmospheric were first observed in ex

periments performed with the apparatus at Wayne University. 

There was at first some doubt concerning the accuracy of 

the piezometer readings which indicated the sub-atmospheric
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pressures* The possibility of irregularities in the appa

ratus was considered and thoroughly investigated and the 

observations repeated* The results were substantially 

the same* several months later the runs numbered 174-178 

were made at the University of Iowa with the results shown 

in the plottings of Figs* 18, 19, SO, @1, and 88* The 

sub-atmospheric pressures were again observed although they 

were of a lesser magnitude* The lesser magnitude was to 

be expected since the Froude number was only 10 in that 

series of runs whereas it had been as high as 70 in the 

runs made at Wayne University.

An explanation of the existence of a sub-atmos

pheric pressure close to the free surface of a body of 

liquid has not been undertaken at this time* It may well 

be explained by the fact that the pressure asymptotically 

approaches atmospheric as the distance from the free sur

face decreases* However, this has not yet been fully 

established and serves only as a possible working hypoth

esis*

The effect of subnormal pressures may best be 

understood by reference to Fig* 3* Assume for example 

that for F0 * 100 and a certain relative radius the 

reduction of k from its initial value of unity to a 

value of 0*8 occurs with Ak/ao * S, and for a shorter 

relative radius and identical Froude number the reduction 

is to k « 0.6 with Ak/A* » 4*0 . It is apparent
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£rom the diagram that the resulting depression of the sur- 

faee will he greater for the sharper curvature* for a given 

AG assuming the change in F to he small* However a 

similar set of values for k and Ak/ne would yield an 

entirely different result for an initial Froude number of 

10* In this case the situation would he reversed and the 

lesser curvature would give the greater depression* The 

latter situation is apparent in Runs 175-178* It follows 

therefore that the extended theory provides a qualitative 

basis for the explanation for a portion of the observed 

effect® of subnormal pressure*

The variation of k with the relative radius and 

with F is indicated from the available data as shown in 

Figs* 14 and 17. Short relative radii give small values 

of k and h i #  Froude numbers give small k Ts • The value 

of k approaches unity as the relative radius increases 

and as the Froude number approaches unity*

A comparison of the surface contours of Runs 174 

and 175 indicates that the reduction of elevation of the 

surface Is effected more rapidly with a short radius wall 

in place than in the free jet*

5&
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(a) Summary

The original objective of the investigation which 

was the establishing of principles and the formulation of 

a procedure to be used in the design of transitions in 

rectangular open channels in which the flow would be at 

supercritical velocities, was modified to the extent de

scribed below* The general characteristics of the flow in 

a transition with reversal of wall curvature were investi

gated thoroughly and on the basis of that study it was con

cluded that although the general behavior was in accord with 

the theory a quantitative prediction of the elements of the 

flow was not feasible at this time for two reasons* first 

of these was that the flow was actually very complex and 

could not always be broken down into simple flows the ele

ments of which could be predicted* The second reason was 

that the assumption of hydrostatic pressure distribution 

used in the elementary theory and equations developed by 

Ippen and Knapp was not fulfilled* As a consequence of 

the latter fact neither the elements of the flow in the up

stream portion of a transition with reversal of wall curva

ture nor those of the ensuing downstream flow, which was 

directly affected thereby, were subject to quantitative

prediction*

An analysis, both theoretical and experimental in 

character, was made of the flow along a diverging curved
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w&l£ assuming nan-hydrostatic pressure distribution to de

termine the characteristics of the surface profile* The 

resulting equations provide an explanation of the differ

ences between the observed surface profiles and those pre

dicted by the theory based upon the assumption of hydro

static pressure distribution*

The extension of the theory of the propagation of 

small waves in a liquid flowing at supercritical velocity 

to include the situation involving non-hydros tat ic pres

sure distribution and the demonstration that pressures 

less than hydrostatic and indeed sub-atmospherle may exist 

in a flow bounded by diverging curved walls are the princ

iple features of the investigation*

(b) Conclusions

The summary of the findings related to transi

tions with reversal of wall curvature and the conclusion 

that in general the flow with that type of boundary is too 

complex for complete analysis at present are set forth 

above*

The following conclusions summarize the findings 

related to the flow bounded by simple diverging curved walls* 

The word normal is used to refer to the elements of the 

flow predicted by the elementary theory based upon the 

assumption of hydrostatic pressure distribution and neglig

ible frictional effects*

1* Experimental observations establish the fact
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that there is a difference between the actual profiles of 

the liquid surface at the curved boundary and those pre

dicted by the theory based upon the assumption of neglig

ible frictional effects and hydrostatic pressure distribution* 

8. Hie experimental data indicate that the dif

ferences between the normal and actual surface elevation 

are of a magnitude which cannot b© explained by the fric

tional drag*

3. The effect of a relatively long radius in pro

ducing a large relative increase in the elevation due to 

frictional drag was not observed* Occasionally long rela

tive radii were accompanied by lees superelevation above 

nomal elevation than was found for short relative radii*

4* Sub nomal pressures were observed at the wall 

and in the body of a liquid flowing adjacent to a curved 

wall*

5* m e  extended theory of the propagation of 

small disturbances in a liquid flowing at supercritical ve

locities indicates the same type of differences between 

actual and normal profiles as were observed*

6* m e  presence of a sharply curved wall may 

effect a more rapid reduction of the surface elevation of 

a liquid flowing on a horizontal surface than could be 

accomplished in a free jet flowing on the same surface at

the same initial Fraud© number.

7* m e  existence of subnormal pressures, which
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may fee actually sub-atmospheric, at the curved sail of an 

open channel transition creates a structural problem whioh 

should fee considered in the design of such structures.

56
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APPENDIX

(a) Derivation of Equations

1* Wav© velocity with hydrostatic pressure 
distribution

for the sake of simplicity the artifice of super

imposing upon the liquid a uniform motion having the ve

locity of propagation of the small wav© will be used* Ibis 

transforms a problem of unsteady flow to one of steady flow* 

We shall consider a negative wave, that is one arising from 

a depression of the water surface* This wave would move 

to the left in fig* 2* The entire body of fluid will then 

be imagined to be moved to the right at the velocity o 

thus holding the wave form motionless* The liquid will then 

appear to flow through the wave form towards the right.

It is assumed that the velocity is uniform 

throughout the depth, the pressure distribution Is hydro

static, and the frictional losses are negligible*

The momentum equation is written for sections 

1 and 2 of fig. 1 in this manner:

rs' .. "P -■t • /, / • f <L'

®e continuity aquation gives the following Information,

■""V f  u

Since the pressure distribution is hydrostatic it follows 

that ^ o Pj. ,,
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Substitution of this value fop (p^ — pg) above gives

and upon elimination of Cg by means of the continuity 

equation then© result®,

CJ. 
*7 t

which may be written

CA .
i—asi~ ! C.
z

r.̂ cL ][ar d : U2 J - azJ
V-

Dividing both sides of this equation by d^ - dg we haves

whidh may be sini>lified by taking note at the assumption 

of a small wav® in which case d^/dg is approximately 

unity and (d^ ♦ dg) is approximately Sd. The simpli

fied fora is,

3
/;

or in a more familiar form

d - / d

Z. pepth change upon passing under a wave front

Proa the momentum equation given above in the 

derivation of Equation (1) w© have upon substitution of 

& d for dj, - dg,
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-jh L ^ "* /Jc0 J - (C'i' aCj (d- 6CJ) ~ C  '^dZ

which upon expansion and elimination of terns of higher 

order he come a;

.it / c/ ~~d Li~2d£c> i * —0*~ci rC \ j  r - CZjSiG

and simplifies to

d d ad A C  m l  -  c ?" / 3 < d

or

or

d d  ■: t j d  +  c l )  ~  Z  c  *> c  d

We have shown that c ■ fgd, therefore

£  j  c/ Z c / j  c  d

Cj ad -  C AC

Now from the geometry at the vector diagram

n ~ cg 3/r/d
and

or

( c  -f- l i  ^  CO 5/3

AC -
(>C <3 ̂

£ C'-S/S*

Substituting for o and no we obtain:

j . udSnW n
^ #■- C'J

or
z,d --

ud‘ duf/S £ & (4)

3. Wave velocity with non-hydrostatic pressure distri

bution*
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Ifce simultaneous solution of Equations (6), (7), 

and (8) proceeds as follows

79 'orJ p “ 
' ' f ^

(6)

.

yP -  P  - 
-/ '2 /° ' c/c)'; ) (7)

^<=J
(S)

Upon substituting In (7) the values of Pj_ and P2 from 

Equation (6) we obtain:

%L[ K d̂ -ktf h/oM ' cfd'l

But from the continuity Equation (3) we hare

c ,d ,n sb
2 dz

which permits the following simplification:

Q
z

- d < ]

a I s  may be simplified considerably In the following 

manner. Faotorlng, dividing and multiplying by k, we 

obtain

3 *J. f  ct1" - d.’j = l d -  d j
l i ‘J o. ' ‘

or

S jj f  a ‘. L~d.L + (> - &)j
~ 7 ~  L ‘ *• " *■

1 ̂ / cr' -i- / '-'ZsJ

and upon dividing hy d^ - dgf
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? t 4 /- a /

,/ JL
,-y

Assuming dx - de very small,

<V* / _s£- //- A)/
T ' L ( ^ li

which gives as the value for c

Q ]/9d l £ •/•■ A i - . ^ )
N  Z(^J k , t

4. Wave angle

since sin &
u

we have,

(9)

S/n/3 i 2J  r* >  +
fcfd /' Ac * j (10)

(/ b

5. Depth change on passing under a wave front 

from momentum considerations we have:

J  / yV u /  ^  J  -  / °  d  d  c
* *  l * .  f

or

J  / /f. '.Y nt i k t  <f * < !j ~ c  d  & c

which becomes

i £  [ a , - *4 *  - c c/ * c

Upon rearranging terms we have,

& d .. r

or

cy

y A
y ̂

Ac/2 '/r i- ^
y

/
y
■"r, d

y. ~  ̂ -f- A*. /
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Dhia m y  be mitten

ad -
C  A C

If, f
-h O  /  j  _ A", *

from the geometry of the vector diagram:

or

c ■+ &JL
if* n

4Ly d*

t-L COLS

Lc O &

How substituting this value for a © and u sin/$ for ©

we have:

a  d

U 1 $ n> 3  ̂e % / i ~ )

which may be simplified to:

a d ™ n/2 & h ̂  (/~ ̂  ) ( 11)

How let kl “ k8 * a k and we have

a; d  ■
<y ,

r-r n,ri a a - 
X- 9 z ;

or
t\d „. -farrC---^ zj K
A0 ~ 5 ' ^ a &

For large values of the Fraud© number one may consider

tan ,9m sin #

Then evaluating sin p  from Equation (10) and equating it 

to tan /? we have*
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Aa- i±T  V  eJ.t f lc *■ sL 7 _  <1 *k
A c, V u * u Z3

But, d-C
F  = 777

./

therefore,

d g
/J >9

"X" V * ^4 rj
^ 9 £

d o k
& &

^anapose the second tern on the right and factor out

7 ^  /  k  9  s L  d S  /  - -  / ' 4  J  •]//T ^  ^ 4  4

then
d :g 
£\ &

Square both sides,

y /“

~y A +

^__d
17? c
£  cv 2'

/ /\jJ
/A (9 i

x t

n f t!S k
Ac/ I

and \ & ,/  .<3 O j - L 4 - d  dS -
(1  e *  * Z  n  9  A  <3

, t
f ~  //  “ V

Solving the quadratic in we have,

dc/
<'.s £5

or more simply

d Xik j. 'Wdf -■■- rk
' r  m  ] rd {*<*J 7 d l . l i

*k

4di
,y| 9

d
?■/; L && v[ A

i J f d d  /6/ r 19 if' A - ; -J (12)
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6* Oritorlon for normal angular depth gradient 

From Equation (15) which is

#_d 
* a

we may obtain, upon equating /($£lt to unity, the 

following,

which becomes, after transposing terms and squaring both 

sides,

Collecting terms and simplifying we obtain,

2 /is® !

(b) Plottings of Experimental Data

Plottings of the type shown in Figs. 18*22 have 

been made, in a form suitable for reproduction, of the data 

for all the runs deemed usable* Ihese drawings are on file 

in the office of the department of mechanics and hydraulics 

of the State University of Iowa with the master copy of the 

manuscript*

or
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